منابع مشابه
Brunn - Minkowski Inequality
– We present a one-dimensional version of the functional form of the geometric Brunn-Minkowski inequality in free (noncommutative) probability theory. The proof relies on matrix approximation as used recently by P. Biane and F. Hiai, D. Petz and Y. Ueda to establish free analogues of the logarithmic Sobolev and transportation cost inequalities for strictly convex potentials, that are recovered ...
متن کاملThe Brunn-Minkowski Inequality
In 1978, Osserman [124] wrote an extensive survey on the isoperimetric inequality. The Brunn-Minkowski inequality can be proved in a page, yet quickly yields the classical isoperimetric inequality for important classes of subsets of Rn, and deserves to be better known. This guide explains the relationship between the Brunn-Minkowski inequality and other inequalities in geometry and analysis, an...
متن کاملThe Log-brunn-minkowski Inequality
For origin-symmetric convex bodies (i.e., the unit balls of finite dimensional Banach spaces) it is conjectured that there exist a family of inequalities each of which is stronger than the classical Brunn-Minkowski inequality and a family of inequalities each of which is stronger than the classical Minkowski mixed-volume inequality. It is shown that these two families of inequalities are “equiv...
متن کاملStability Results for the Brunn-minkowski Inequality
The Brunn-Miknowski inequality gives a lower bound on the Lebesgue measure of a sumset in terms of the measures of the individual sets. This classical inequality in convex geometry was inspired by issues around the isoperimetric problem and was considered for a long time to belong to geometry, where its significance is widely recognized. However, it is by now clear that the Brunn-Miknowski ineq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2009
ISSN: 0019-3577
DOI: 10.1016/s0019-3577(09)00018-4